Anomalous Hydrogen-1 and Carbon-13 Spectra of some New N-AcyI-N'aryldiazene Complexes of Osmium

By Joseph Chatt, Jonathan R. Dilworth,* and Takashi Ito, A.R.C. Unit of Nitrogen Fixation, University of Sussex, Brighton BN1 9QJ

The complex $[OsCl_3O(PPh_3)_2]$ reacts with the hydrazides 4-RC₆H₄NHNHCOR' (R = MeO, Me, H, CI, or NO₂; R' = H, Me, Et, Prⁿ, Bu^t, or CH₂Ph) to give the N-acyl-N'-aryldiazene complexes [OsCl₂(4-RC₆H₄·N₂·COR')-(PPh₃)₂]. Although apparently diamagnetic, their ¹H and ¹³C n.m.r. spectra show shifts of a pattern and magnitude characteristic of paramagnetic species. Moreover these shifts are restricted to certain protons and carbon atoms of the diazene ligand, and the tertiary phosphine protons and carbon atoms show no anomalies. The magnitude of the shifts is highly dependent on the nature of the substituents in the diazene N-phenyl group, and there is an approximately linear relation between the shifts and Hammett σ constants for the substituent. Variabletemperature ¹H n.m.r. spectra suggest that a second-order paramagnetic effect may be responsible for the shifts.

Our earlier investigations of the reactions of metal oxocomplexes with substituted hydrazines 1,2 have shown that complexes of structures (A) and (B) were obtained from [ReCl₃O(PPh₃)₂] and benzoylhydrazide hydrochloride in ethanol [structure (A)] or acetone [structure (B)]. The complex $[MoCl_2O(PMe_2Ph)_3]$ reacts with N'-aryl- or N'-alkyl-aroylhydrazides to give complexes of structure (C),² whereas [ReCl₂O(PPh₂)₂] reacts to give the arylimido-derivatives [ReCl₃(NAr)(PPh₃)₂].¹ The complex [OsCl₃O(PPh₂)₂] reacts with hydrazine dihydrochloride to give [OsCl₃(NH₃)(PPh₃)₂].³

In this paper we describe the preparation of substituted diazene complexes of osmium, [OsCl₂(RC₆H₄·N₂· COR')(PPh₃)₂], (I), by reaction of [OsCl₃O(PPh₃)₂] with N'-arylacylhydrazides in refluxing ethanol in the presence of triphenylphosphine.⁴ The complexes are of general structure (D), confirmed for the derivative with R = H and R' = Me by X-ray crystallography,⁵ and a series with different R and R' groups (Table 1) were obtained using the appropriate hydrazides.

RESULTS AND DISCUSSION

The dibromo-analogue [OsBr₂(Ph·N₂·COMe)(PPh₃)₂], (II), was prepared from [OsBr₃O(PPh₃)₂]. Complexes J. Chatt, J. R. Dilworth, G. J. Leigh, and V. D. Gupta, J. Chem. Soc. (A), 1971, 2631.
 J. Chatt and J. R. Dilworth, J.C.S. Chem. Comm., 1972, 549.

with other tertiary phosphines, (III), (V), and (VI), or trimethyl phosphite, (IV), as ligands were prepared by ligand exchange from the triphenylphosphine complexes, (I). The dithiocarbamato-complexes [(VII) and (VIII), Table 2] were obtained by treating (I) with an excess of the appropriate sodium dithiocarbamate in methanol or acetone under reflux. Some substituted N'-phenylacylhydrazides, e.g. 2,5-Cl₂C₆H₃NHNHCOMe gave the hydride [OsHCl₃(PPh₃)₃] instead of complexes of structure (D). The hydrazide 4-O₂NC₆H₄NHNHCOMe yielded a mixture of the hydride and a complex of type (D), whereas reaction of the amine PhCOCH₂NHPh with [OsCl₃O(PPh₃)₂] also yielded the hydride.

I.r. and U.v. Spectra.—Bands due to v(N-H) and ν (C=O) occur at 3 200-3 300 and 1 650 cm⁻¹ respectively in the i.r. spectra of the parent hydrazines but were absent from those of the complexes, in accord with structure (D). The stretching frequency ν (Os-Cl) appeared generally at ca. 290 cm⁻¹ in the far-i.r. spectra

(see Table 1) as a broad band, resolved into a doublet in some cases. This band was absent from the spectra of the bromo-analogues, but $\nu(Os-Br)$ was not visible.

The u.v. solution spectra of the complexes (Table 1) showed intense absorptions at ca. 230, 260, 400, and 500 nm. The ε values suggest that all arise from chargetransfer transitions. The last three absorptions depended markedly on the nature of the substituents on the chelate ring; however, no correlation between this dependence and the anomalous ¹H and ¹³C n.m.r. spectra (see below) could be made.

¹H N.M.R. Spectra.—In the following discussion the carbon atoms of the diazene-ring system are numbered as ³ J. Chatt, C. D. Falk, G. J. Leigh, and R. J. Paske, J. Chem.

 Soc. (A), 1969, 2288.
 ⁴ J. Chatt, J. R. Dilworth, and T. Ito, J.C.S. Chem. Comm., 1973, 77.
⁵ M. B. Hursthouse, personal communication.

TABLE 1

Complexes $[OsCl_2(RC_6H_4\cdot N_2\cdot COR')(PPh_3)_2]$, (I), $[OsBr_2(Ph\cdot N_2\cdot COMe)(PPh_3)_2]$,	, (II)	, [OsCl ₂ (Ph•N ₂	2•COR′)(P	$MePh_2)_2],$	(III),
$[OsCl_2(Ph \cdot N_2 \cdot COMe) \{P(OMe)_3\}], (IV), [OsCl_2(Ph \cdot N_2 \cdot COCH_2Ph)(PMe_2Ph)_2], (V)$, and	$I [OsCl_2(Ph \cdot N_2)]$	COCH ₂ P	$^{\mathrm{h}}(\mathrm{PEt}_{3})_{2}]$, (VI)

				Vield a	M.p.	An	alysis/%	Ъ		v(Os-Cl) ¢	Ŧ	lectronic s	pectra (nm)	đ
Complex	R	R'	Appearance	<u>/////////////////////////////////////</u>	$(\theta_c/^{\circ}C)$	С	н	N	Mb	cm-1				<u> </u>
(I)	4-MeO	Me	Brick-red fine needles	91	157-160	55.5	4.1	3.0	905	282	232	257	413	484
(T)	111.0	D .	Dutate and free months.	04	100 101	(56.1)	(4.2)	(2.9)	(978)	972	$(39\ 300)$	(33 000)	(7 830)	(10 490)
(1)	4-MeO	Et	Brick-red fine needles	84	100101	(56.5)	(4.3)	(2.9)		215	(40 900)	(33 300)	(6 730	(10 900)
(I)	4-MeO	н	Deep brown prisms	75	168 - 171	`56.1	4.3	3.1		297	233	255	413	490
(7)	1100	м.	D	67	100 104	(56.6)	(4.1)	(3.0)	040	202	(43 855)	(34 440)	(10 850)	(6 615)
(1)	4-MeO	ме	Brown needles	07	169—194	(57.0)	(4.3)	(3.0) •	(948)	200	(39 000)	(30 700)	(7 470)	(5 600)
(I)	3-MeO	Et	Brown fine needles	85	164	57.3	4.4	2.9	910	274	232	259	41 0	490
(1)	9 16-0	м.	Decess was dies	51	175 170	(57.4) 57.2	(4.4)	(2.9)	(962)	989	(40 200)	(32 000)	(8 560)	(5 960)
(1)	3-MeO	me	Brown needles	51	175	(57.0)	(4.3)	(3.0)		200				
(I)	н	н	Brown needles	43	174	55.2	4.0	2.9		301	233	257	406	485
(1)		N	D.1.1.()	94	177 101	(55.2) f	(3.9)f	(3.0)f	050	904	(43 070)	(30 870)	(6 175)	(4 433)
(1)	н	ме	Bright brown needles	34	1//181	(56.6)	(4.1)	(3.0) g	(934)	294				
(II)	н	Me	Brown needles	100	169 - 170	51.0	3.7	2.8	(001)					
	**			50	170 101	(51.7)	(3.7)	(2.7)		90.9				
(111)	н	ме	Light brown prisms	92	179	50.8 (50.4)	4.6	3.4 (3.5)		293				
(IV)	н	Me	Dark brown prisms	53	92-97	25.9	4.1	4.2		325, 321				
		.			1-1 1-5	(25.6)	(4.0)	(4.3)		000	000	077	9.05	170
(1)	н	Et	Dark brown needles	57	171-179	96.0 (57.0)	4.2	2.8		292	233 (47 500)	(31.000)	395 (6.970)	470 (5.440)
(\mathbf{I})	н	Prn	Bright brown needles	82	186—189	57.6	4.6	3.1	880	291	233	261	406	490
(-)						(57.4)	(4.4)	(2.9)	(962)		$(42\ 610)$	(30 750)	(8 220)	(6 130)
(1)	н	\mathbf{But}	Brown needles	86	180 - 185	57.5 (57.8)	4.8	3.0	975 (976)	284	232	250 (29.010)	407	490
(1)	н	PhCH.	Brown prisms	84	181	59.2	4.3	3.0	(310)	293	(40 330)	(25 010)	(0 410)	(0 100
(1)		1	Drown prionic	•-		(59.5)	(4.2)	(2.8)						
(111)	н	PhCH ₂	Brown prisms	72	166 - 167	54.7	4.4	3.3		295, 284				
(\mathbf{N})	н	PhCH.	Brown prisms	84	161-171	(34.2)	(4.3)	(5.2)		298. 283				
(•)		Inchi	Diown prisms		101 111	(47.3)	(4.5)	(3.7)		200,200				
(VI)	н	$PhCH_2$	Deep brown prisms	21	87-88	44.4	5.9	4.0						
(1)	4 (1	Мо	Priol: rad fine needles	89	175 179	(43.3)	(5.9)	(3.9)		970	933	958	406	494
(1)	4-01	THE	Differ-red life ficentes	02	175-175	(57.2)	(4.1)	(2.7)		213	(39 630)	(26 530)	(6 230)	(4155)
(I)	4-C1	Et	Brick-red fine needles	85	171 - 172	54.9	4.4	2.8		278	. ,	. ,	. ,	· · ·
(T)	(0 N	Ma	Deals because a codi-c	74	170 100	(55.0)	(4.0)	(2.9)		200				
(1)	4-02N	me	Dark brown needles	74	1/2	(54.0)	(3.8)	(4.3)		302				
(I)	$4-O_2N$	Et	Brown needles	82	171 - 174	54.3	4.2	3.9		293	233	263	385	520
						(54.4)	(4.0)	(4.2)			(51 100)	(31 000)	(11 600)	(4 580)

a Based on [OsCl₃O(PPh₃)₂]. b Calculated values are given in parentheses. c In Nujol mulls. d In dichloromethane solution. Molar absorption coefficients (ϵ/l mol⁻¹ cm⁻¹) are given in parentheses. c P, 6.4 (6.5); Cl, 7.3 (7.5%). f Calculated values are those for the $\frac{1}{4}$ CH₂Cl₂ adduct. g P, 6.8 (6.6); Cl, 7.6 (7.6%). h P, 6.5 (6.3); Cl, 7.7 (10.8%).

shown in (E); H^6 then refers to the proton attached to carbon C^6 , H^3 to that on C^3 , *etc.* Since oxidation to the corresponding diazene-compounds causes no significant change in the chemical shifts of the substituent groups, the hydrazide chemical shifts are taken to represent the unco-ordinated diazene-compounds. The large differences in shifts between the hydrazide and corresponding diazene complex must occur on co-ordination of the diazene molecule.

¹H N.m.r. spectra of complexes (I; R' = Et) are shown in Figure 1 and data for other complexes summarised in Table 2. The greatest shifts (relative to the free hydrazides) occurred for the H3, H7, and H9 protons (downfield) and the H⁶, H¹⁰, and H⁸ protons (upfield). Much smaller shifts were observed for the H^4 (upfield) and H¹ and H² protons (downfield) (Table 2). The observed shift pattern, particularly the alteration in sign of the shift of the protons of the Ph group attached to the chelate ring, is characteristic of delocalisation of unpaired electron density in a π system. Another criterion of π delocalisation was observed; viz. replacement of a proton by a Me group caused the Me protons to shift in the opposite sense to the replaced proton. Thus H^4 and H^3 in complexes (I; R = H, R' = H and Me), H^8 and 4-Me in (I; R = H, R' = Me) and (I; R =4-Me, R' = Et), and H^7 and 4-Me in complexes (I; R = H, R' = Me) and (I; R = 4-Me, R' = Me) showed shifts in opposite senses. However, along the R' group alkyl chain, replacement of H by Me did not

change the sign of the shifts since π delocalisation cannot operate there.

As Figure 1 shows, shifts of H³, H⁶, and H¹⁰ are not only large but approximately linearly dependent on the Hammett σ constants⁶ for the substituent R. This suggests that there is a high degree of delocalisation over the chelated diazene-ring system, in agreement with the X-ray crystal structure⁵ which shows the diazene Ph group to be coplanar with the N-N-C(R')-O system.

ring system. There were no detectable differences in the binding energies of the diazene-nitrogen atoms or of the chlorine or phosphorus atoms.

The chemical shifts of H^3 were also dependent on the tertiary phosphine ligands. Generally the more aliphatic

	TABLE 2	
¹ H N.m.r. spectra of the complexes (I)(-(VI), $[Os(S_2CNMe_2)_2(RC_6H_4 \cdot N_2 \cdot COMe)]$, (VII), $[Os(S_2)_2(RC_6H_4 \cdot N_2 \cdot COMe)]$, (VII), (VII), (VII)]	CNEt ₂) ₂ -
$4-O_2NC_6H_4\cdot N_2\cdot COMe)$], (VII), and the correst	esponding hydrazides 4-RC ₆ H ₄ NHNHCOR' (in squar	e brackets)

			δ" p.p.m.						
			~	R' Protons		N-Pl	henyl protons	5 ^b	
Complex	R	R'	H ¹ or H ⁴	H ³	H ²	H ⁶ and H ¹⁰	H ⁷ and H ⁹	H ⁸	R
(I)	н	н	0.34 (s)			2.84 (d)	8.16 (t)	-0.39 (t)	
(1)	4-MeO	Me	[1.23 (11)]	6.29 (s)		5.04 (d)	7.2		4.03 (s)
(I)	4-Me	Me		6.92 (s)		4.54 (d)	7.66 (d)		$\begin{bmatrix} 5.78 \\ (s) \end{bmatrix}$ 5.73 (s)
(I)	н	Me		7.58 (s)		4.06 (d)	7.91 (t)	0.98 (t)	[2.30 (S)]
(I)	4-Cl	Me		9.27 (s)		3.38 (d)	8.08		
(\mathbf{I})	4-0,N	${ m Me}$		12.57 (s) [c]		1.08 (d)	10.00 (d)		
ίľ	4-MeO	Et		6.62 (q)	1.43 (t)	5.03 (d)	obs.		4.06 (s)
(I)	4-Me	Et		[2.37 (m)] obs.	$\begin{bmatrix} 1.21 & (b) \end{bmatrix}$ 1.50 (t)	4.44 (d)	7.57 (d)		$\begin{bmatrix} 3.82 \ (s) \end{bmatrix}$ 5.78 (s)
(I)	н	Et		$\begin{bmatrix} 2.38 \ (m) \end{bmatrix}$ 7.90 (q)	1.23(t) 1.60(t)	3.95 (d)	obs.	1.11 (t)	[2.31 (s)]
(I)	4-Cl	Et		[2.50 (m)] 8.54 (q)	1.73 (t)	3.16 (d)	8.05 (d)		
(I)	$4-O_2N$	Et		13.05 (q)	2.56 (t)	- 1.90 (d)	9.95 (d)		
(I)	н	\Pr^n	1.23 (t)	7.49 (t)	$\begin{bmatrix} 1.29 \\ (1) \end{bmatrix}$ 2.08 (sx)	3.90 (d)	7.88 (t)	1.03 (t)	
(I)	н	Bu ^t	[0.90 (t)] -	[2.32 (III)]	2.00 (s)	3.60 (d)	7.81 (t)	0.59 (t)	
(I)	н	$PhCH_2$		7.46 (s)	[1.23 (3)]	4. 14 (d)	7.81 (t)	1.47 (t)	
(III)	н	PhCH_2		[3.78 (s)] 6.49 (s) [3.78 (s)]		5.38 (d)	7.63 (t)	3.48 (t)	
(V)	н	\mathbf{PhCH}_{2}		[3.78 (3)] 6.05 (s) [3.78 (s)]		5.46 (d)	obs.	3.82 (t)	
(VI)	н	\mathbf{PhCH}_{2}		8.40 (s)		5.03 (d)	8.37 (t)	2.62 (t)	
(I)	3-Me	Me		7.54 (s)		4.08 (s), 4.24 (d)	7.96 (t)	2.10 (d)	0.83 (s) [2.34 (s)]
(II)	н	Me		$\begin{bmatrix} 2.12 \\ \text{obs.} \end{bmatrix}$		4.78	7.95 (t)	1.74 (t)	[2.01 (3)]
(III)	н	Me		6.10 (s)		5.36 (d)	7.58 (t)	3.23 (t)	
(IV)	н	Me		3.42 (s)		obs.	obs.	obs.	
(VII)	н	Me		4.35 (s)		7.10 (d)	7.40 (t)	6.57 (t)	
(VII) (VIII)	4-O₂N 4-O₂N	Me Me		$\begin{array}{c} 4.71 (s) [c] \\ 4.65 (s) [c] \end{array}$		6.65 (d) 6.70 (d)	8.31 (d) 8.31 (d)		

• In CDCl₃ solution at room temperature and 100 MHz (see text for notation); phosphine resonances have been omitted; s = singlet, d = doublet, t = triplet, q = quartet, sx = sextuplet, obs. = resonance obscured. ^b Protons H_{6-10} occurred as unresolved multiplets in the region 6-7 p.p.m. for the hydrazides. ^c Too insoluble. ^d H¹ protons.

X-Ray photoelectron (X-p.e.) spectra of complexes (I; R = 4-MeO and 4-O₂N, R' = Me) showed that variation of substituent R caused significant differences in the osmium 4f level binding energies, e.g. 54.6 (R = 4-MeO) and 55.9 eV (R = 4-O₂N).* The 1.3 eV difference suggests considerable participation of the osmium atom in electron delocalisation over the diazene-

* 1 eV \thickapprox 1.60 \times 10^{-19} J, 1 B.M. \thickapprox 9.27 \times 10^{-24} Am^2.

⁶ D. H. McDaniel and H. C. Brown, J. Org. Chem., 1958, 23, 420.

the phosphine the greater the upfield shift of the protons. The chemical shifts of protons in the tertiary phosphine ligands themselves are summarised in Table 3 and are normal for diamagnetic osmium complexes. Thus for complexes (III; R = H, R' = Me and CH_2Ph) with PMePh₂ the Me protons were observed as 1:2:1 triplets at *ca.* 1.8 p.p.m. (*cf.* 2.08 p.p.m. for [OsCl₂-(CO)₂(PMePh₂)₂]⁷), also confirming that the two ⁷ D. P. Melville, D.Phil. Thesis, University of Sussex, 1970, p. 71.

phosphine ligands are mutually *trans*. The Me protons of the PMe₂Ph ligand in complex (V) appeared as a pair of

TABLE 3

¹H N.m.r. spectra of the tertiary phosphine ligands in the complexes [OsCl₂(Ph'·N₂·COR')L₂] in CDCl₃ solution at room temperature at 100 MHz

Complex	$\mathbf{R'}$	L	δ/p.p.m.	Assignment
(III)	\mathbf{Me}	$PMePh_2$	1.80 (t)	Me (H)
			7.75 (m)	o-, m-, p-H
(1V)	Me	$P(OMe)_3$	3.85 (d)	Me
(III)	PhCH,	$PMePh_2$	1.76 (t)	Me (H)
. ,	-	-	77.3 (m)	o-, m-, p-H
(V)	PhCH ₂	PMe_2Ph	1.12(t)	Me
			1.37 (t)	• ••• • U
(371)	DECH	DE+	1 - 1.3 (m) 0.73 (a)	$0-, m-, p-\Pi$ Me (H)
(1)	rnon ₂	1 1513	1.13 (m)	CH_2 (H)

asymmetric triplets centred at 1.37 and 1.12 p.p.m. due to the asymmetry of the complex. These spectra are in contrast to those of tertiary phosphine complexes with first- or second-order paramagnetism where the phosphine protons show large anomalous shifts.

The P(OMe)₃ complex (IV) showed Me resonances as pairs of asymmetric doublets, suggesting that in this case the phosphite ligands are mutually cis. This change in configuration markedly reduces the shifts of the chelated diazene-protons compared to the trans complexes. There were no abnormalities in the chemical shifts of the diazene Ph group, suggesting that the change in configuration causes the Ph ring to twist out of the plane of the diazene-ring disrupting delocalisation. A similar effect was observed in the ¹H n.m.r. spectra of complexes $[Os(4-RC_6H_4 \cdot N_2 \cdot COR') (S_2CNR''_2)]$ [(VII) and (VIII), Table 2] where the diazene Ph-group resonances showed no abnormalities and the chemical shifts of the R' alkyl group were only ca. 2 p.p.m. downfield from those of the hydrazide. Moreover, the chemical shift of R' was independent of the substituent R suggesting that the diazene Ph group has again rotated out of the plane of the diazene-ring system.

The observed anomalous ¹H shifts were independent of field strength, being the same at 60 and 100 mHz. However, they were proportional to the absolute temperature (Figure 2) which suggests that the shifts are not the result of first-order paramagnetism, but some second-order effect. First-order paramagnetism frequently gives rise to large chemical shifts, but these depend inversely on temperature. Large chemical shifts arising from a second-order Zeeman effect have been reported for rhenium(III) and osmium(IV) complexes,⁸ which have measurable temperature-independent susceptibilities, with magnetic moments of ca. 2.0 B.M. However, the osmium diazene complexes appear to be diamagnetic, by conventional Faraday measurements at 298 and 100 K, and in solution by the n.m.r. method. They also failed to show any significant e.s.r. spectra over the temperature range 12-298 K. The very weak J. Chatt, G. J. Leigh, and D. M. P. Mingos, J. Chem. Soc. (A), 1969, 1674.

signals observed were 10^3-10^4 times less intense than those normally encountered for paramagnetic complexes.

FIGURE 2 Temperature dependence of ¹H chemical shifts for the complex $[OsCl_2(Ph\cdot N_2 \cdot COMe)(PMe_2Ph_2)_2]$: H⁸ (\Box), H³ (Me) (O), H⁶ and H¹⁰ (\blacksquare), and H⁷ and H⁹ (Δ)

TABLE 4

¹³C Chemical shifts (p.p.m.) ^{*a*} for complexes (I; R' = Et) and the hydrazides 4-RC₆H₄NHNHCOEt

Compound	C^2	Сз	C4	C ⁶ ,C ¹⁰	C7,C9	C ⁸
Hydrazide ^b	9.6	27.6	173.8		114.7 \pm 1	
$R = NO_2$	28.6	1.5	258.0	70.0	206.0	
R = Cl	21.8	10.0		99.5	174.0	
R = H	20.7	11.1	262.1	104.5	167.0	159.7
R = MeO	18.8	13.8		94.7	160.7	

^a In CDCl₃, downfield positive; carbon atoms numbered as in (E). ^b Resonances almost invariant with R.

FIGURE 3 Correlation diagram for ¹³C chemical shifts of the hydrazides 4-RC₆H₄NHNHCOEt and the complexes $[OsCl_2-(4-RC_6H_4\cdot N_2\cdot COEt)(PPh_3)_2]$ as functions of Hammett σ constants for $R = NO_2$ (a), Cl (b), H (c), and MeO (d)

¹³C N.M.R. Spectra.—¹³C N.m.r. spectra of complexes (I; $\mathbf{R}' = \mathbf{E}\mathbf{t}$) are summarised in Table 4 and represented as a function of the Hammett σ constant for R in Figure 3. Assignment of resonances due to the non-tertiary carbon atoms of the diazene ring-system was achieved using single-frequency off-resonance decoupling or interrupted ¹H decoupling. Generally, resonances due to the tertiary carbon atoms were either too weak to be observed or their assignments could not be confirmed.

In the off-resonance decoupled ¹³C spectrum of (I; R = H, R' = Et) carbon atoms C² and C³ (Me and CH₂) respectively) appeared as a quartet and a triplet. Atoms C⁷, C⁹, and C⁸ gave rise to triplets, and C⁶ and C^{10} to a doublet. The position of the resonance due to C⁴ was confirmed by comparison with the ¹³C offset resonance-decoupled spectrum of (I; R = R' = H) (Table 1), where a peak at 241 p.p.m. appeared as a doublet due to coupling with the formyl proton. Although only small downfield shifts were observed for the H^2 [Me, see (E)], the C² carbon atoms showed quite large downfield shifts of up to 19 p.p.m., and their magnitude was very dependent on R (Figure 1). The C^3 resonances appeared upfield relative to the hydrazide in contrast to H³ which shifted downfield. The ¹³C shifts of C⁷ and C⁹ showed an approximately linear dependence on the Hammett σ constant for R, but C⁶ and C¹⁰ showed an apparent anomaly for R = 4-MeO the value being 15 p.p.m. less than that required for an approximately linear dependence.

Table 5 summarises the relative magnitudes and signs

TABLE 5
Hydrogen-1 and ¹³ C shifts (p.p.m.) of the complexes
(I; $R' = Et$) relative to the free hydrazides

Carbon	1	H	¹³ C			
or proton	Direction	~	Direction	·····		
no.	of shift	Range •	of shift	Range 🏻		
1	Downfield	0.27				
2	Downfield	0.21 - 0.27	Downfield	19.0 - 9.2		
3	Downfield	10.69 - 3.25	Upfield	26.1 - 13.8		
4	Upfield	ь	Downfield	84.2 - 88.3		
5	-		Upfield			
6, 10	Upfield	5.4 - 2.7	Upfield	44.7 - 20.0		
7, 9	Downfield	3.2 - 0.0	Downfield	91.3 - 42.0		
8	Upfield	ca. 6 °	Downfield	75.0 °		
• Fro	m $R = 4-O_2$	N to 4-MeO.	^b Only for (1	; $R = R' =$		
H). •	Only for $R =$	= H.				

of the ¹H and ¹³C chemical shifts relative to the hydrazide. The C² carbon atoms showed quite large shifts relative to H² which is compatible with the diminution in shift magnitude anticipated for σ propagation of unpaired electron density along the alkyl chain. Shifts of C⁶, C¹⁰ and C⁷, C⁹ were of the same sign as H⁶, H¹⁰, and H⁹. As observed for the H¹ shifts, resonances due to the tertiary phosphine carbon atoms showed no abnormalities and occurred in the region normally appropriate for diamagnetic complexes.

Conclusions.—The pattern of the large anomalous chemical shifts in the osmium diazene complexes is characteristic of paramagnetic species, but the complexes are apparently diamagnetic. However, unlike the spectra of paramagnetic complexes the large ¹H and ¹³C shifts occur exclusively in one ligand, the ¹H, ¹³C, and ³¹P spectra of the tertiary phosphine ligands being

⁹ G. A. Webb, personal communication.

¹⁰ K. G. Blaikie and W. H. Perkin, jun., J. Chem. Soc., 1924, **125**, 313.

normal. The direct temperature dependence suggests a second-order paramagnetic origin for the shifts since first-order paramagnetism results in an inverse temperature dependence.

The magnitude of the shifts is too great for their attribution to a ring-current effect, which usually causes shifts of *ca.* 1 p.p.m. at most. Moreover, the shifts are not an intrinsic property of the diazene ligand, as the ¹H n.m.r. spectrum of PhCON₂Ph shows no abnormalities. Nor are they a general feature of chelated diazene complexes, because although the complexes (I) show resonances at 3.65 and 0.78 p.p.m. due to the *ortho* and *para* protons respectively of the C₆H₄R group, [MoCl₂-(NR')(R'\cdotN₂·COR)(PMe₂Ph)] (R = R' = aryl) has a completely normal ¹H n.m.r. spectrum.

We therefore suggest that the observed anomalous shifts may originate from mixing of a paramagnetic excited state, localised on the diazene ring, with an essentially diamagnetic ground state. The resulting unpaired electron density could then be too small to detect by bulk-susceptibility measurements or with certainty with e.s.r. However, evidence for a paramagnetic origin of the anomalous shifts is only circumstantial. Some INDO calculations on these complexes are to be carried out ⁹ and it is hoped that the results will provide further insight into the factors responsible for the observed spectra.

EXPERIMENTAL

All reactions were carried out under nitrogen. The substituted phenylhydrazines were prepared by established methods $(4-\text{MeOC}_6\text{H}_4\text{NHNH}_2)^{10}$ $4-\text{MeC}_6\text{H}_4\text{NHNH}_2)^{11}$ $4-\text{ClC}_6\text{H}_4\text{NHNH}_2)^{11}$ and $2,5-\text{Cl}_2\text{C}_6\text{H}_3\text{NHNH}_2^{12})$ or obtained commercially (PhNHNH₂, 4-NO₂C₆H₄NHNH₂, and 4-MeC₆H₄NHNH₂+HCl). The N'-arylacylhydrazides, RC₆-H₄NHNHCOR', were prepared according to equations (1)

$$\frac{\text{RC}_{6}\text{H}_{4}\text{NHNH}_{2} + (\text{RCO})_{2}O \xrightarrow{\text{Et}_{4}O}}{\text{RC}_{6}\text{H}_{4}\text{NHNHCOR'} + \text{R'CO}_{2}H} (1)$$

$$\begin{array}{c} \text{RC}_{6}\text{H}_{4}\text{NHNH}_{2} + \text{R'COCl} \xrightarrow{C_{5}\text{H}_{5}\text{N}} \\ \text{RC}_{6}\text{H}_{4}\text{NHNHCOR'} + C_{5}\text{H}_{5}\text{N}\cdot\text{HCl} \quad (2) \end{array}$$

$$\frac{\text{RC}_{6}\text{H}_{4}\text{NHNH}_{2} + \text{R'CO}_{2}\text{Me} \xrightarrow{\text{neat}}}{\text{RC}_{6}\text{H}_{4}\text{NHNHCOR'} + \text{MeOH}} (3)$$

(R = 4-MeO, R' = Me and Et; R = 4-Me, R' = Me and Et; R = 3-Me, R' = Me; R = H, R' = Me, Et, Prⁿ, and PhCH₂; R = 4-Cl, R' = Me and Et; R = 2,5-Cl₂, R' = Me), (2) (R = H, R' = Bu^t; R = 4-O₂N, R' = Me or Et), and (3) (R = H or 4-Me, R' = H) (elevated temperature).

I.r. spectra were recorded on Unicam SP 1 200 (Nujol mulls, 400—4 000 cm⁻¹) and Grubb-Parsons D.M.4 spectrometers (Nujol mulls, 200—500 cm⁻¹). Electronic spectra in dichloromethane solutions were obtained on a Unicam SP 800 spectrophotometer. The ¹H n.m.r. spectra were measured using JEOL PS-100 and Varian T-60 instruments generally in CDCl₃ solution with tetramethylsilane as ¹¹ W. MacPherson and G. W. Stratton, J. Amer. Chem. Soc., 1915, **37**, 906.

¹² I. M. Hunsberger, E. R. Shaw, J. Fugger, R. Ketcham, and D. Lednicer, *J. Org. Chem.*, 1956, **21**, 394.

internal standard. ¹³C N.m.r. spectra were recorded on a JEOL PS-100 instrument operating in the Fourier-transform mode with CDCl₃ as internal standard. E.s.r. spectra were obtained on a Varian E3 spectrometer and magnetic moments were measured on Faraday balances. Molecular weights were determined osmometrically in benzene solutions on a Hitachi–Perkin-Elmer vapour-pressure osmometer 115, and m.p.s were recorded on a Köfler hot-stage in air and are uncorrected. Microanalyses for carbon, hydrogen, nitrogen, and chlorine were by Mr. and Mrs. A. G. Olney of Sussex University and those for chlorine and phosphorus by Dr. A. Bernhardt, Germany.

The complexes $[OsCl_3O(PPh_3)_2]$ and $[OsBr_3O-(PPh_3)_2]$ were prepared by procedures described in the literature.³

Preparation of Dichlorobis(triphenylphosphine)osmium(II) Complexes * with Chelated Diazene Ligands, $[OsCl_2(RC_6H_4:N_2:COR')(PPh_3)_2]$, (I).—Since the method is general a typical preparation is described and analytical data, m.p.s, etc. are listed in Table 1.

(N-Acetyl-N'-phenyldiazene-ON)dichlorobis(triphenylphosphine)osmium(II), (I; R = H, R' = Me). Trichloro-oxobis(triphenylphosphine)osmium(v) (0.50 g, 0.60 mmol),N'-phenylacetohydrazide (0.50 g, 3.33 mmol), andtriphenylphosphine (1.9 g, 7.28 mmol) were heated underreflux in ethanol (50 cm³) for 2 h under nitrogen. Thesystem was filtered hot to give a brown microcrystallinesolid, which was washed with ethanol and recrystallisedfrom dichloromethane-ethanol as bright brown needles(0.19 g, 34%).

The dibromo-analogue $[OsBr_2(OCMe \cdot N_2 \cdot Ph)(PPh_3)_2]$, (II), was obtained in the same way from tribromo-oxobis(triphe-nylphosphine)osmium(v) and recrystallised from benzeneethanol. The other complexes, except (III—(VI) (Table 1), were obtained similarly.

Preparation of Dichlorobis(tertiary phosphine)osmium(II) Complexes with Diazene Ligands, $[OsCl_2(Ph\cdot N_2 \cdot COR') - (PR_3)_2]$ [(III)—(VI); R' = Me and CH₂Ph].—These were prepared by tertiary phosphine exchange reactions starting from corresponding PPh₃ complexes. A typical procedure is described below. (N-A cetyl-N'-phenyldiazene-ON) dichlorobis (methyldi-

phenylphosphine)osmium(II), (III; R = H, R' = Me). Complex (I; R = H, R' = Me) (0.46 g, 0.49 mmol) was dissolved in dry benzene (30 cm³) and the solution was filtered. To the filtrate methyldiphenylphosphine (1.76 g, 8.80 mmol) was added and the mixture was heated under reflux for 1.5 h. The resulting brown solution was concentrated under reduced pressure to small volume and methanol (60 cm³) was added. The solvent was evaporated under reduced pressure to *ca*. 20 cm³, when the complex was precipitated as a brown microcrystalline *solid* which was filtered off and washed with precooled methanol (0.25 g, 51.5%).

The complexes (III; R = H, $R' = PhCH_2$) and (IV)— (VI) were prepared similarly using the appropriate PPh₃ complexes and an excess of the tertiary phosphine.

Formation of Hydrido-complexes.-The complex [Os-Cl₃O(PPh₃)₂] (0.50 g, 0.60 mmol), N'-2,5-dichlorophenylacetohydrazide (0.52 g, 2.37 mmol), and PPh₃ (2.44 g, 9.31 mmol) were heated under reflux for 3 h in ethanol. The resulting pale brown precipitate was filtered off, washed with ethanol, and recrystallised from dichloromethane (20 cm^3) and methanol (30 cm³) as pale brown *crystals* (0.20 g, 30%), m.p. 160 °C (decomp.) (Found: C, 59.3; H, 4.5; Cl, 9.9; N, trace. $C_{54}H_{46}Cl_3OsP_3$ requires C, 59.8; H, 4.4; Cl, 9.8; N, 0%). I.r. spectrum in Nujol mull: ν (Os-H) 1 890m and 2 100 s cm⁻¹; v(Os-Cl) 317, 290, and 270 cm⁻¹. In dichloromethane solution in air this complex reacted to give [OsCl₃O(PPh₃)₂]. The same hydride complex was also obtained from the analogous reactions of the oxoosmium complex with N'-2,5-dichlorophenylpivalohydrazide or with (benzoylmethyl)phenyl amine.

We thank Dr. D. A. Lowe for recording the e.s.r. spectra, Dr. J. A. Connor for the X-p.e. spectra, and Drs. Ruth Lynden-Bell and G. A. Webb for helpful discussions.

[5/288 Received, 12th February, 1975]

* For the purposes of providing a name, the complexes have arbitrarily been written as derivatives of simum(11). They could equally well have been defined as N'-arylacylhydrazido(2-)-NO complexes of simum(1v) since there is no means of determining the metal oxidation state.